A BRIEF 2024 UPDATE ON DIABETES

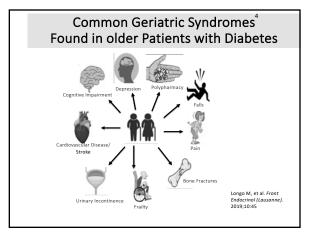
Naushira Pandya M.D., CMD, FACP Professor and Chair, Department of Geriatrics Kiran C. Patel College of Osteopathic Medicine Geriatric Medicine Fellowship Program Director Aventura Hospital and NSU

NSU

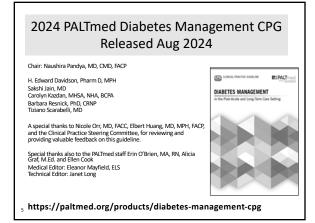
2

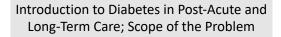
3

1


Disclosures

- Grant funding from HRSA
- I have used some educational slides from the American Diabetes Association

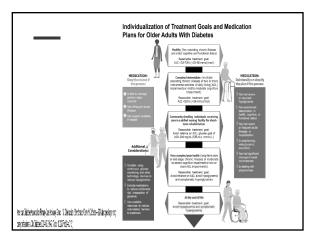

2


Objectives

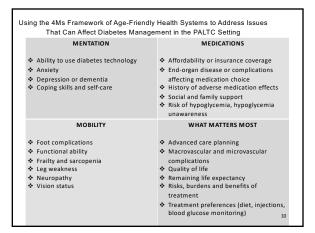
- Identify strategies to optimize diabetes management in older adults in diverse settings
- Incorporate the use of newer agents to improve cardiometabolic and renal outcomes
- Identify and reduce risks of hypoglycemia
- Discuss potential applications and benefits of wearable diabetes technologies

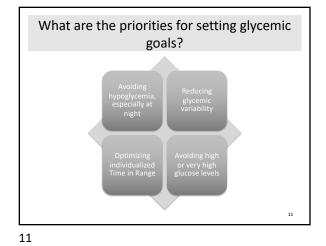
- The prevalence of patients with diabetes in post-acute and longterm (PALTC) facilities in the United States is estimated to be between 25% to 34%.
- For older adults, diabetes is an independent predictor of placement in a PALTC facility. Patients living with diabetes are a vulnerable group who have
- . the following problems

 - _
 - e rollowing problems atypical presentation take multiple medications experience frequent infections high rates of cardiovascular and renal complications risk for dehydration, hyperosmolar states recurrent hospitalizations functional decline, mobility impairment cognitive impairment hypoglycemia _
 - _
 - Ξ


TABLE 7. Problems and Complications Associated with Diabetes in Older Adults

- Accelerated atherosclerosis with vascular complications (e.g., myocardial infarction, stroke)
- Changes in weight (gain or loss)
- Confusion, acceleration of cognitive impairment
 Decline in ability to perform activities of daily living
- Dehydration Depression
- Excessive skin problems (infections, ulcers, delayed wound healing) Eye problems (e.g., blurring or loss of vision)
- Falls
- Foot ulcers, foot deformities, gangrene, other foot problems
- Frequent infections
- Impaired pain perception, neuropathy

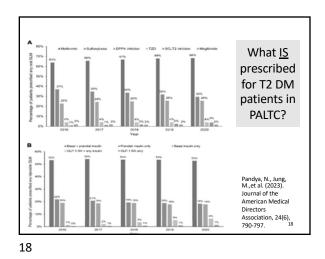

7


How to individualize care and glycemic goals

8

	Special Considerations	Rationale	AIC	Fasting and Premeal Blood Glucose Targets	Blood Glucose Monitoring
Patients residing in ALFs	 Multiple chronic conditions Impairment in 2 or more IADLs Variable life expectancy 	 Individual preferences Facility capabilities 	Less than 8.0% (64 mmol/mol)	90-150 mg/dL (5.0-8.3 mmol/L)	Monitoring frequency based on complexity of regimen
Community- dwelling patients at SNF for rehabilita- tion	Rehabilitation potential Goal to discharge home	 Need optimal glycemic control after acute illness 	 Avoid relying on A1C due to acute illness Follow current blood glucose trends 	100-200 mg/dL	Monitoring frequency based on complexity of regimen
Patients residing in LTC	 Limited life expectancy Frequent health changes Avoid symptomatic hyper- or hypoglycemia 	 Limited benefit of intensive control Focus on QOL 	Avoid relying solely on A1C	100-200 mg/dL	Monitoring frequency based on complexity of regimen and risk of hypo- glycemia
Patients at end of life	Avoid invasive diag- nostic/therapeutic procedures with little benefit		No role for A1C	Avoid symptomatic hyperglycemia	Monitoring periodically only to avoid systemic hyperglyce- mia

- Key Issues to Remember About Type 1 Diabetes in PALIC E Do not assume all patients have T2DM, especially if there is a lack of caregiver engagement or access to current medical records. Patients' medical records may not correctly identify a diagnosis of T1DM, and for those with cognitive impairment and poor social support, clarification of this may not be available.
- not be available.
 Insulin is a life-preserving therapy, and basal insulin is required even if meal intake is poor
 Hyperylowinia and diabetic ketoacidosis (DKA) may develop if insulin treatment is inadequate or
 omitted due to fear of hypoglycemia
 WA may be mistaken for, or occur concurrently with, organ failure, sepsis, or medication-related
 acidosis, and may not be recognized or managed in a timely manner
 People with TIDM are at high risk for hypoglycemia, especially if they are cognitively impaired
 Insulin requirements may increase during acute infections, cardiovascular events, and other medical
 emergencies

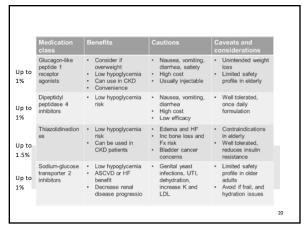

- Insum requirements may increase ouring acute intections, carotiovasoular events, and other metocal emergencies
 Practitioness may be unfamiliar with insulin pumps or CGM, which can help reduce hypoglycenia and glycemic variability
 Consider an endocrinology consultation to guide therapy in patients with complex treatment regi-
- Contract on the contracting of contraction of galaxies unity in placeta mini compart recomment of the metric technologies
 First-line caregivers and nursing staff may need more-intensive diabetes management education, especially if a patient is using an insulin pump or CGM.

Weinstock RS, et al. Diabetes Care 2016;39: 603–610. Pandya, N. et al.(2020). Diabetes Spectrum, 33(3), 236-245. 16 16

17

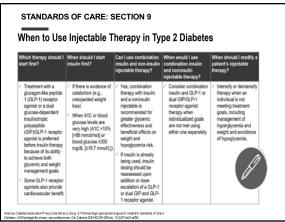
16

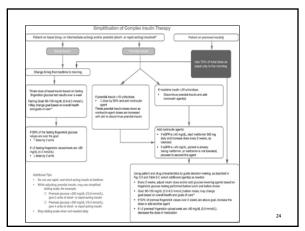
PHARMACOLOGIC THERAPY FOR T2DM; RECOMMENDATIONS



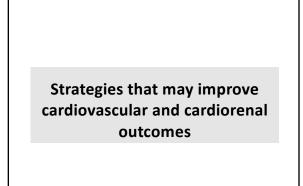
Commonly used pharmacological therapies in older adults Adapted from Leung G , Munshi et al. Diab Sectrum 2018 Biguanides Safe if no · May cause GI First-line contraindications

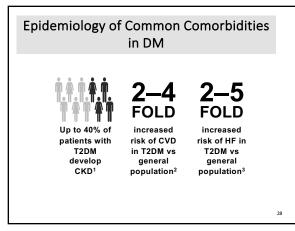
 Low risk of disturbances • Weight loss treatment if no contraindications Up to 2% hypoglycemia Vitamin B12 · ER may reduce GI · Low cost deficiency disturbances · Hypoglycemia risk · Short-acting Sulfonylureas · Low cost Drug interactions glipizide to reduce Up to (e.g., warfarin, hypoglycemia
Avoid glyburide 2% allopurinol) (renal elimination) Meglitinides Skip dose if · Increased pill · Useful with one skipped meal burden • Useful if variable • High cost large meal -controls PP Up to 2% eating habits hyperglycemia Medicatio Benefits Cautions


19


Diabetes Medications in PALTC				
Med	AVOID IF	USE IF		
Metformin	GFR<30, decompensated HF, hepatic disease, risk of dehydration, unexplained diarrhea			
GLP1-RA	Weight loss, anorexia, gastroparesis, chronic constipation, unexplained GI symptoms	ASCVD CKD		
SGLT2i	AVOID if on dialysis, unable to drink fluids independently, dehydration, incontinence, UTI, genital yeast infection, weight loss, fractures. Stop 5 d prior to elective procedure to avoid DKA	HF CKD (eGFR ≥25 mL/min/1.73 m²)		
DPP-4i	Unexplained GI symptoms, severe anorexia (stop concurrent GLP1-RA)	Safe for most patients		
Basal insulin	Injectable treatments not possible if BG monitoring inconsistent, lack of caregiver support, hypoglycemia risk (stop sulfonylureas, stop SSI)	Insulin-dependent		
Prandial insulin	Injectables not possible in care setting, if BG monitoring inconsistent, lack of caregiver support, hypoglycemia risk, erratic intake, tube feeding (stop sulfonylureas, stop SSI)	BG goals not met		
Sulfonylurea	Hypoglycemia risk, dementia, concurrent insulin use			
TZDs	HF, other edema, osteoporosis, bladder cancer	21		

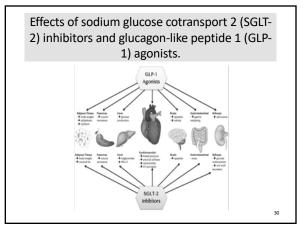
	eGFR < ESRD ON		eGF	R >30	HIGH HYPOGLYCEMIA RISK	END OF LIFE
Patient Characteristics	Normal appetite, no weight loss	Frail, anorexia, low body weight	Normal appetite, no weight loss	Frail, anorexia, low body weight	Multiple comorbidities. Tight gly- cemic control. Hypoglycemia or lack of awareness. Softe nylursa or insulin. Cagnitive impairment.	Geals of comfort. Aroidance of hypoglycem and hyperglycemia
					Inconsistent meal intake.	
Preferred Medications	DPP4 inhibitor (linagliptin) GLP1- RA Basal insolin*	DPP4 inhibitar Basal insulin*	Methomin ER DPP4 inhibitors SGLT2 inhibitors GLP1-RA Basal insulin*	OPP4 inhibitors Metformin ER basal insulin*	Methomin ER DPP4 inhibitors SGU72 inhibitors GLP1-RA	OPP4 inhibitors Linagliptin Besal insulin**



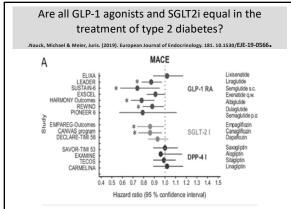


Strategies to	O Replace SSI in PA LTC Munshi MN, et al. Diab Care.2016;39(2)
Current regimen	Suggested steps
SSI is the sole mode of insulin treatment	 Give 50-75% of the av. daily insulin requirement over 5-7d as basal Stop SSI Use non-insulin agents or fixed dose meal time insulin for PPG PRN Consider basal insulin in AM to impact post PPG and reduce hypoglycemia.
SSI used in addition to scheduled basal insulin	 Add 50-75% of the av. insulin requirement used as SSI to the existing basal dose Use non-insulin agents or fixed dose meal time insulin for PPG PRN
SSI is utilized in addition to basal and scheduled meal time insulin (Correction Dose insulin)	 If correction dose required frequently, the av. correction dose before a meal may be added to the scheduled meal time insulin dose at the preceding meal. Similarly if BG is consistently elevated before BF requiring correction doses, the scheduled basal inulin dose could be increased by the av. correction dose used
SSI is used in short term due to irregular intake or illness	 Generally needed for acute illness and irregular dietary intake As health and BG stabilize, stop SSI, return to previous regimen as tolerated, and reduce frequency of monitoring
Wide fluctuations in BG levels in patients with cognitive decline and/or irregular intake	Use scheduled basal and meal time insulin based on individual needs with goal of avoiding low glucose May use simple scale such as "give 4 units prandial insulin if BG >300" Keep patients hydrated when glucose levels are high (>300)

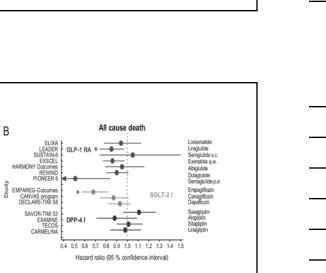
Indicator	Suggested Monitoring Interval	
Blood glucose levels	Individualize according to the patient's needs and goals	
Blood pressure	Monthly More frequently if poor control or medication dose change	
AIC	 Every 6 mo if well controlled Every 3 mo if poorly controlled 	
Electrolytes and eGFR	 Annually More frequently in patients with pre-existing chronic kidney disease or who are on a nephrotoxic medication 	
24-h urine protein/ creatinine clearance	 If significant decline in renal function (as clinically indicated) If nephrotic syndrome suspected 	
Lipid profile	 Annually (if appropriate) 6 wk after initiating or changing medical treatment 	
Foot care	 Daily inspection by patient if able Weekly inspection by caregivers Anneal comprehensive foot examination by practitioner (inspection, evaluation of foot pulses and loss of protective sensation) 	
Pain control	As clinically indicated	
Depression	Annually or as clinically indicated	

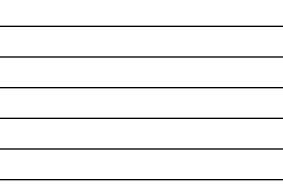


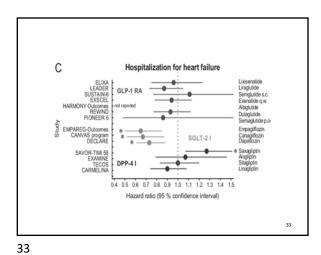
28

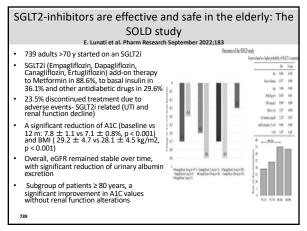

Cardiorenal Comorbidities

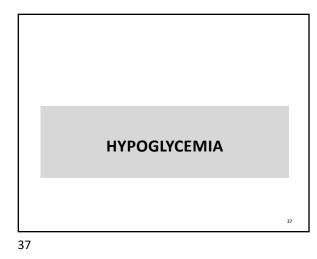
- In patients with eGFR < 30 ml/min/1.73m2, glucagon-like peptide-1 receptor agonists such as subcutaneous liraglutide, semaglutide, or dulaglutide are preferred, as they demonstrated advantageous atherosclerotic cardiovascular and kidney outcomes
- In patients with heart failure (systolic and/or diastolic), and/or with CKD with eGFR between 25 and 60 ml/min, a sodium-glucose cotransporter 2 inhibitor such as empagliflozin, canagliflozin or dapagliflozin is the preferred choice that have demonstrated cardiorenal benefit.
- SGLT2 inhibitors should not be initiated if eGFR <30 to 45 mL /min. In this case, the use of an alternative or additional agent (commonly a GLP-1 RA) is indicated to achieve glycemic goals.

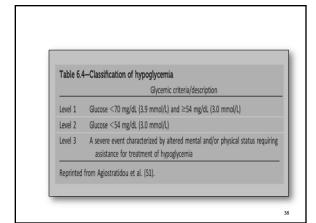

29

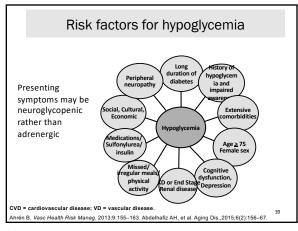





Use of GLP1-RA in older people with type 2 DMmeta-analysis; 11 studies, 93,500pts Random Effects Model (Hazard Ratio) Number of studies Outcome (n events/N analysed) Hazard ratio [95% CI] 0.89 [0.76; 1.03] 0.86 [0.80; 0.92] 0.73 <65 years (183) 6 ż 0.95 0.80 [0.42; 1.51] 0.81 [0.67; 0.99] <65 years (167/4200) >65 years (420/8437) 22 1 <65 years (273/9437) >65 years (497/13101) 0.77 [0.61; 0.98] 0.82 [0.68; 0.98] 0.70 00 00 ł T. Karagiannis. Diab Res and Clin Pract. <65 years (207/4200) >65 years (502/8437) 0.81 [0.58; 1.13] 0.86 [0.72; 1.02] 22 0.75 April 0.25 1.14 [0.73; 1.77] 0.86 [0.71; 1.04] <65 years (152/4200) >65 years (427/8427) 22 2021;174 -0.5 1 2 Favors GLP-1 RAs Favors placebo




34


analysis; 11 studies, 93,500pts					
Outcome (n events/N analysed)	Number of studies	P-interaction	Random Effects Model (Hazard Ratio)	Hazard ratio (95% CI)	
Three-component MACE <65 years (1518/17239) >65 years (1793/15179)	4	0.38	*	0.94 (0.86; 1.03) 0.87 (0.74; 1.01)	
All-cause mortality <65 years (650/13146) >65 years (912/11034)	2	0.95		0.80 (0.69; 0.94) 0.81 (0.53; 1.24)	
Cardiovascular death <65 years (355/13146) >65 years (448/11034)	2 2	0.92		0.83 (0.65; 1.05) 0.81 (0.50; 1.31)	
Stroke <65 years (463/13146) >65 years (396/11034)	3 3	0.02		1.18 (0.94; 1.48) 0.83 (0.69; 1.00)	T. Karagiar
Cardiovascular death or I <65 years (859/16241) >65 years (1211/15185)	4 4	0.91	*	0.79 [0.69; 0.91] 0.78 [0.66; 0.93]	Diab Res a Clin Pract.
Heart failure hospitalisati <65 years (306/13146) >65 years (413/11034)	2 2	0.06		0.83 (0.67; 1.04) 0.62 (0.51; 0.76)	April 2021
Composite renal endpoin <85 years (1019/15051) >65 years (844/12695)	4	0.67	+	0.62 (0.54; 0.70) 0.57 (0.43; 0.77)	

Impact of hypoglycemia in the elderly

- Hypoglycemia can worsen neuropathic pain ٠
- Likelihood of falls, fractures, and dizziness can increase
- Cognitive impairment increases the likelihood of hypoglycemia
- But hypoglycemia can worsen cognitive impairment •
- Hypoglycemia unawareness
- Increase in cardiovascular events, hospitalization and total mortality; (HR 2.48 [1.41–4.38]) whether clincially mild or severe hypoglycemia
- Longer hospital stays and cost (8 vs 6.7d, \$19,800 vs. \$16,800)

40

Ligthelm J AM Geriatr Soc 2012 Aug;60(8):1564-70. doi: 10.1111. Pai-Feng Hsu et al. Diabetes Care 2013 Apr; 36(4) Pandya, N., Trenery, A. Et al. American Journal of Managed Care, 27(10).

40

Hypoglycemia Assessment, Prevention, and Treatment

Prevention and management of hypoglycemia Use CGM for individuals at high risk for hypoglycemia.

- Glucoss is the preferred treatment for hypoglycemia in conscious individuals with glucose levels <70 mg/dL (<39 mmol/L), although any form of fast-acting carbohydrate can be used. Re-test and re-treat, if needed, after 15 minutes.
- L Ensure traditional provided on its use and proper storage.
- Upon occurrence of one or more episodes of level 2 or level 3 hypoglycemia, promptly reevaluate the treatment plan, including considering whether to deintensify or switch medications.
- $\bigcirc \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_$
- $\int_{-\infty}^{\infty} Conduct ongoing assessments of cognitive function, ensuring extra caution and support for hypoglycemia if impaired or declining cognition is identified.$
- Advisory Group, 6. Glycemic goals and hypophoamia: Standards of Care in Diabeles-2024

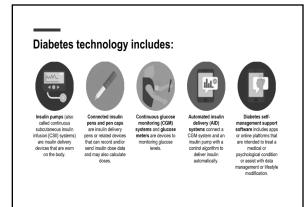
Treatment of hypoglycemia-Rule of 15

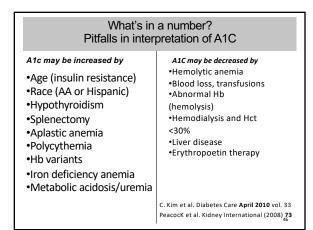
- Give 15 g of glucose or carbohydrate, equivalent to

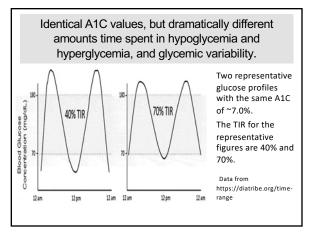
 ½ cup juice, or soda
 ½ cup apple sauce
 1 tablespoon sugar or honey
 1 cup milk
 1 tube glucose gel
 3-4 glucose tablets, 3 marshmallows
 Wait 45 minutes

 - Wait 15 minutes
- Recheck blood glucose. If still below the target, give **another 15 g** of glucose or carbohydrate Assess for possible cause of hypoglycemia and document .
- Patients who are unconscious may be treated with IM or SC glucagon (1 mg or 1 unit), or intravenous 50% dextrose (usually 50 mL, although a lesser volume may be used) in the stand break matching have been as the stand brea . e Setting: Cli

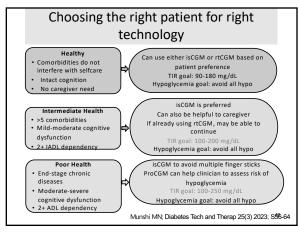
42

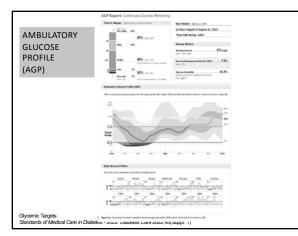

42


•

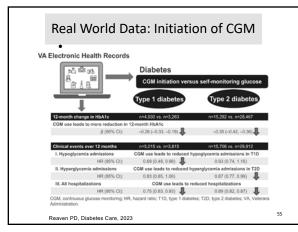


43


DIABETES TECHNOLOGY CONTINUOUS GLUCOSE **MONITORING (CGM)** 44


		Types of CGM	
	Type of CGM	Description	-
	Real time CGM	CGM systems that measure and display glucose levels continuously	Į
Type Desc		CGM systems that measure glucose levels continuously but only display glucose values when swiped by a reader or a smartphone	
	Professional CGM	CGM devices that are placed on the patient in the provider's office (or with remote instruction) and worn for a discrete period of time (generally 7–14 days). Data may be blinded or visible to the person wearing the device.	

Metrics	T1D/ T2D targets	Older/ High risk targets
# days CGM worn	<u>≥</u> 14d	<u>≥ 1</u> 4d
% Time CGM active	>70%	>50%
Av mean Glucose	Individualized	Individualized
GMI	Individualized	Individualized
Glycemic variability (%CV)	<u><</u> 36%	<u><</u> 36%
% Time above range >250 mg/dL (V High)	< 5%	< 10%
% Time above range >180 mg/dL (High)	< 25%	
% Time in range (70-180 mg/dL) (TIR)	> 70%	>50%
% Time below range (<70 mg/dL) (Low)	< 4%	<1 %
% Time below range (<54 mg/dL) (V Low)	<1 %	50



52

Rationale for use of CGM in community older adults

- Many clinical variables affect A1C levels (anemia, transfusion, hemolysis, CKD)
- Older adults are more likely to have hypoglycemia unawareness, and longer periods of hypoglycemia; may be unrecognized by care partners
- A1C levels do not always reflect risk of hypoglycemia
 The coefficient of variation (%CV), and GMI may be better indicators of hypoglycemia risk than A1C
- Improved glycemia risk than ALC
 Improved glycemic outcomes (lower A1C and Time in Range) without significant severe hypoglycemia or DKA
- Frequent CBG monitoring is time-consuming, poorly documented, difficult to perform in those with cognitive impairment, poor coordination, lack of social support, or diabetes distress
- Practitioners lack time to review BG logs, and adjust treatments
 Care partners can have remote access to BG trends and alarm

Munshi, Diab Technol & Ther 2023; 25, Suppl 3 Prately RE, et al. JAMA 2020;323 (23) Argento NB et al. Endocr Pract 2014;20

Potential advantages of CGM in PALTC

- Reduction of staff time in monitoring capillary blood glucose
- Ability to monitor glucose levels closely in very sick patients on room isolation
- · Ability to improve detection of hypoglycemia
- · Ability to detect hypoglycemia in patients at the end of life
- Ability to review BG levels in multiple patients in different parts of a facility utilizing on-line access
- Ability to optimize BG control across transitions in sites of care

56

What data do we have so far on CGM use in PALTC? (1 of 3)

- Feasibility study in older home-dwelling people with diabetes receiving home care did not reveal major problemsextensive training was required
- Study of 35 patients completing a 7-day blinded flash CGM review in 10 Connecticut nursing homes
 - 1 in 3 had at least 2 consecutive BGs <70mg/dl
 - 1 in 4 had BGs <60 mg/dl
 - 1 in 12 had BGs <50 mg/dl
 - Hypoglycemia by fingerstick (FS) was very rare, with a total of just 4 FS <70 mg/dl during all observation periods combined

Larsen, A.B., Hermann, M. & Graue, M. Pilot Feasibility Stud 7, 12 (2021) Kasia J. Lipska, et al. Diabetes 1 June 2020; 69 (Supplement_1): 380–P.

57

What data do we have so far on CGM use in PALTC? (2 of 3)

Glycemic Control Utilizing CGM vs. POC Testing in 97 older adults with T2D in LTC facilities

POC subjects tested ac and hs and wore a blinded Dexcom CGM up to 60 days; treatment adjusted by the primary care team, with a target glucose of 140-180 mg/dL

•Rt-CGM subjects adjusted based on daily CGM profile.

•Baseline characteristics (mean age: 74.7, mean A1c: 8.06) •The mean daily glucose by POC was lower than CGM (171±45 vs. 188±45 mg/dL, p<0.01)

•CGM detected more subjects with hypoglycemia <70 mg/dL and <54 mg/dL; as well as hyperglycemia >250 mg/dL compared to POC testing, all p<0.001

•Conclusion: In older adults with T2D admitted to LTC, the use of CGM significantly improved detection of hypoglycemic and hyperglycemic events compared to POC

THAER IDREES, IRIS A. CASTRO-REVOREDO et al. Diabetes 20 June 2023; 72 (Supplement_1): 947–P.

58

American Diabetes Association.	older Adults with Type 2 Diabetes in Long-Term Care Facilities				
betes: 2023;72(Supplement_1). doi:10.2337/db23-947-	,				
	DOG Date	600 (D.);	Durlin		
	POC Data	CGM Data	P value		
Glycemic Control			< 0.001		
Mean daily Glucose, mg/dL	171± 45	188± 45			
	77 (80%)	96 (99%)			
BG >180 mg/dL, n (%)					
BG >180 mg/dL, n (%) BG >250 mg/dL, n (%)	54 (56%)	75 (77%)			

59

What data do we have so far on CGM use in PALTC? (3 of 3)

- CGM-Guided Insulin Administration in Long-Term Care Facilities: A **Randomized Clinical Trial**
- Insulin treated T2 DM patients POC testing group wore blinded CGM compared to rt-CGM group with daily treatment adjustments
- No significant difference
 - in TIR (53.38% \pm 30.16% vs 48.81% \pm 28.03% P = .40), Mean daily CGM glucose (184 vs. 190)
 - TBR (<70 md/dL) or TBR (<54 mg/dL)
 - Use of rt-CGM is safe and effective in guiding insulin therapy in LTC with similar improvement in glycemic control compared to POC-guided therapy

Idrees, T., Castro-Revoredo, I. A. et al. Journal of the American Medical Directors Association, 25(5), 884-888.

60

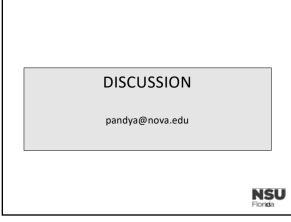
Factors affecting use of technology in PALTC

- Site of care (ALF, SNF, LTC, group homes, rural facilities)
 Diabetes complications, comorbidities, prognosis, hypoglycemia risk, transitions of care

 - Goals of care (overall and glycemic goals)

.

.


- Facility characteristics
 Staffing shortages
 Clinical competency of staff
- Facility culture, relationship with clinicians
- Location and internet connectivity
 Clinician knowledge and familiarity with diabetes technology
 Supervision of NPs, Pas

 - Frequency of medical visits (low in rural NH)
- Treatment changes if receiving steroids, tube feedings insurance coverage for CGM :
- High degree of state regularity oversight

61

CPT CODES FOR CGM					
	CGM Services				
	95249 Personal CGM - Startup/Training Ambulatory CGM for minimum of 72 hours; patient- provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout of recording.	hours; physician or professional (office) provided equipment, sensor	95251 CGM Interpretation Ambulatory CGM of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; analysis, interpretation and report.		
Medicare physician office fee schedule	\$61.67	\$147.07	\$34.56		
Private payer (2023)	\$130	\$320	\$98 62		

62

